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Abstract

It is known that marine sediments can support both compressional
and shear waves. However, published work on scattering from irregu-
lar elastic media has not examined the influence of shear on sea bed
scattering in detail. A perturbation model previously developed by
the authors for joint roughness-volume scattering is used to study the
effects of elasticity for three sea bed types: sedimentary rock, sand
with high shear speed, and sand with “normal” shear wave speed.
Both bistatic and monostatic cases are considered. For sedimentary
rock it is found that shear elasticity tends to increase the importance
of volume scattering and decrease the importance of roughness scat-
tering relative to the fluid case. Shear effects are shown to be small
for sands.
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INTRODUCTION

In a previous paper, the Born approximation (first-order perturbation the-
ory) was developed for sound scattering by rough, elastic sea beds [13]. This
formalism combines roughness scattering and scattering due to volume inho-
mogeneities. An example was given showing strong and complicated elastic-
ity effects for roughness and volume scattering for sea bed rock. Essen [6]
has used the Born approximation to treat sea bed roughness scattering for
types ranging from very soft sediment to basalt. His results indicate that
shear effects can be important for sands as well as for consolidated sediments
and basalt. Yang and Broschat [21], however, have applied the Born approx-
imation and small-slope approximation to the interface scattering problem
and give an example indicating that shear effects should not be important for
rough sands. Ivakin [12] reached a similar conclusion with respect to volume
scattering from sands.

One purpose of the present article is to provide an evaluation of the
importance of shear effects in both volume and roughness scattering from sea
bed types ranging from sand to rock along with a comparison of the volume
and roughness components of scattering. Another purpose is to study the
dependence of volume scattering upon the statistics obeyed by the volume
fluctuations, e.g., correlations between volume parameters.

Use of the Born approximation limits the quantitative validity of the
results of this article to sea beds having small roughness and relatively low
levels of fluctuation in volume parameters. It is expected, however, that
our results will have gqualitative validity more generally. That is, when the
Born approximation indicates that shear effects are large, this qualitative
statement is likely to be true even when the level of roughness or volume
inhomogeneity is sufficient to invalidate the Born approximation.

1 SEA BED STATISTICAL MODEL

It is assumed that a rough interface separates a lossless, homogeneous fluid
(representing sea water) from an inhomogeneous elastic sea bed medium.
Bulk properties of the sea bed are defined by density, p, and compressional
and shear wave speeds, ¢, and ¢; . Subscripts, p and ¢, here and below denote
longitudinal (compressional) and transverse (shear) waves, respectively. In
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the water, ¢; is taken to be zero.

The sea bed parameters will be divided into two classes: those represent-
ing the average, non-fluctuating values of bulk properties such as density and
wave speeds, and those describing sea bed random properties. The former are
defined by the seabed type and will be assigned values appropriate to sand
and rock. The latter are defined by the statistics of the random fluctuation
of bulk parameters and interface relief.

1.1 Average Properties

The average sea bed parameters of interest are as follows. The density ratio,
a, = p/py, is the ratio of the average sediment mass density to that of the
overlying water. The compressional wave speed ratio, a, = ¢,/cy, is likewise
the ratio of the average sediment compressional wave speed, c,, and the water
compressional wave speed, c¢s. This ratio is complex, with imaginary part
determining absorption loss. The shear speed ratio, a; = ¢;/cy, is the ratio
of the average complex sediment shear speed, ¢;, and the compressional wave
speed in the water. The “loss parameters” [14, 18] can be expressed in terms
of the real and imaginary parts of the compressional and shear speed ratios

Im[a,)

b = = Rela,] (1)

where the subscript a = p,¢ denotes the wave type in the seabed.

1.2 Model for Roughness

The roughness two-dimensional (2-D) spectrum is taken to be of the form

. B
®g )(K) = ) 9\ Vr /2 (2)
(K% + K§) ~

where K = (K} K3), K = \/K} + K. Equation 2 assumes that roughness
statistics are stationary and isotropic, with a spectrum that obeys a power
law for K? > K¢ . The parameter Kj is an inverse correlation scale for
roughness in the transverse directions. The roughness spectrum strength,

B, and the power exponent, ~,, can be estimated, as shown below, from
available one-dimensional (1-D) data.
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The integral over all K (including negative spatial frequencies) of the
spectrum yields the mean-square roughness,

h? = / ) (K)d2K (3)
This gives the following expression for the dimensionless spectral strength:

B = h? K3 (32 = 1)/m . o

" This requires 4, > 2, but this is shown below to be usually valid.

Most of available data on roughness properties are in the form of one-
dimensional spectra, <I>§")(K1). Usually they can be well approximated by
the power law

A(r) hg"'ﬁr

Q(lr)(l{l) = pr3 y er > Iiro. (5)
K
The trivial parameter hg = 1 m is introduced for convenience to yield a

dimensionless roughness spectrum strength, A"), Typical measured values
(see, e.g., [2]) are AT ~ 1076 to 1072, and {, ~ 1 to 3.
The relation between 1-D and 2-D spectra is given by the integral

o) (K,) = / oY) (K) dK,.

Then, using Eq. 2, one obtains

(r) 2B(r) [>e] dm
6
/ (6)

(191. (AI) = (A,IZ n A,g)(,yr_l)/z (1132 n 1)7’,/2.
Comparing 6 to 5, one obtains the relation between parameters B(") and A",
Ir and éra

A/r:§r+]-, (7)

BM = hy 4 F(£)AD, (8)

"~ where

. 1“(1';1')
= MR

4

(9)



with T being the gamma function. In particular, one obtains F(1) = /7, F(2) =
1/2, F(3) = 2/m, F(4) = 3/4. This generalizes the result, given in Ref. [14]
for the case Ky = 0. Note that £ &~ 1 to 3 corresponds to v & 2 to 4.

1.3 Model for Volume Inhomogeneities

- A description of the statistics of volume inhomogeneities is given by a ma-
trix of spatial (3-dimensional) cross-spectra. These are Fourier transforms
of cross-correlation functions for the relative fluctuations ¢, = Ap/p, ¢, =
Acp/cy, €4 = Acifc;. These relative fluctuations will be collectively desig-

nated eg with 8 = p,p,t. In this notation, the cross-spectra are taken to be
of the form ' ‘

Bgsgr

(6 +¢* + K2a?)™/*
This equation assumes that inhomogeneity statistics are stationary and isotropic
in transverse directions, with a spectrum that obeys a power law if ¢* +
K?%a® > q2. The parameter qo is an inverse correlation scale for inhomo-
geneities in the vertical direction. The so-called aspect ratio, a, specifies
the anisotropy of the inhomogeneities and is the ratio of horizontal to ver-
tical correlation scales [11, 24, 22, 23]. For a = 1, the inhomogeneities are
1sotropic on the average and have a spherical form (referring to surfaces of
constant correlation in spatial lag space). For a > 1, the inhomogeneities are
strongly anisotropic and constant correlation surfaces are thin oblate ellip-
soids. Generally, in the case of transverse anisotropy, one more aspect ratio
must be introduced corresponding to the third correlation scale [4]. Angular
coordinates for orientation of the inhomogeneity ellipsoids in space can also
be arbitrarily introduced [22, 23].

The three-dimensional integrals analogous to Eq. 3 are the elements of
the covariance matrix for volume fluctuations

o0 (K,q) = (10)

< €5l >=/q>§;g,(K,q)d2qu. (11)

These integrals are infinite if 4, < 3 but can be made finite for all v, if a
high frequency cutoff is introduced. Accordingly, it will be assumed that

%) (K,q) =0 (12)
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for
K*a® + ¢ > (qo/e)?, e < 1. (13)

Introduction of the small dimensionless cutoff parameter, e, provides
smooth behavior of the corresponding correlation functions for small spa-
tial lags and also yields finite variance for the inhomogeneity fluctuations for
any 7,. Obviously, this is important as experimental data have finite vari-
ance and have finite spatial resolution with respect to both large and small
scales. The “small” spatial lags for which the cutoff has effect have scales
comparable to, or smaller than the components of the vector (a,a,1)e/qo.

The matrix elements Bgg: can be determined from Equation 11 (see Ap-
pendix). Otherwise, available geoacoustic data can be used for the estimation
of the spectrum parameters. In the case of strongly correlated or anticor-
related fluctuations one can consider any one of the three fluctuations, say
density, as defining the other two. This parameter will be called the “refer-
ence” parameter. In this case, put

€8 = TBp€p, (14)
where the corresponding speed fluctuation ratios (with respect to fluctuations
of the density) are

0
Tﬁp = P (—éfpé) i 5 = pvta (15)

¢
where rg, can be taken from compilations of geoacoustic data, for example
Hamilton’s [7, 9, 10, 8] and others [17, 20]. In this case

Bggr =g, Bpp- (16)

for all combinations of B and g, with r,, = 1.
The parameters B,, and 7, can be also obtained from available data.
Most data on fluctuations of bulk properties provide only one-dimensional

(vertical) spectra, <1>§“)(q) . Usually they can be well approximated by the
power law

v A(v)hl—év
o(@) == > e (17)

Again, the parameter hg = 1 m is used to obtain a dimensionless spectrum
strength, A®). Typical measured values (see, e.g., [1, 3, 16, 22, 24]) are A®) ~
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1075 to 1072,¢, =~ 0.5 to 2. Typical estimates obtained from inversions of
geoacoustical data [11, 22, 24] are a & 1 to 10. '

The relation between 1-D and 3-D spectra, generalized in Ref. [24] for
anisotropic inhomogeneities with aspect ratio q, is given by the expression

a® d{"(q)
2rq’  dg

¢ =1/¢® + K2a2.

Then, using Eq. 17, one obtains the relation between parameters B® and
A®, 4, and ¢&,, :

2(q) =

where

Yo = & +2Ia

.
B® = pi=% AMa2¢, /(2m).

2 NUMERICAL EXAMPLES

To illustrate the effects of shear elasticity, we consider scattering from sea
beds of varying composition, ranging from sand to solid rock. F iner-grained
silts and clays are not considered, as their low shear speeds (6, 19] result in
negligible shear effects. The parameters Cp, Ct, and p that characterize these
examples were chosen primarily to illustrate certain points rather than to
provide extensive coverage of a range of realistic sea bed types. Some of the
chosen examples are fairly realistic, others are not. The parameters spec-
ified below were used in computing angular dependencies of the scattering
strength. With regard to roughness scattering, some of the effects seen in
the present example are visible in other published work [5, 21, 6]. The intent
here is to compare and contrast elasticity effects as they appear in roughness
and volume scattering.




2.1 Scattering Strength

In this section, the expressions given in [13] are used for calculation of scat-
tering strength, 10log o , where o is the scattering cross section per unit

- area of the sea bed and characterizes the frequency- angular distribution of

the mean intensity of field fluctuations in the Fraunhofer zone (or far zone,
relative to a scattering surface or volume). The scattering cross section is
assumed to be the sum of contributions from interface roughness and volume
inhomogeneity in the form

o = 0,(Ks, K,) + 0u(Ks, K,

where o, and o, are components due to roughness and volume scattering,
respectively, K, and K; are horizontal (transverse) components of the scat-
tered and incident wave vectors, correspondingly. Vectors K, and K; are
expressed through the essential angular coordinates of the problem

K, = (kfcosb;;cos ¢, kycosbs;sings;) . (18)

These are: grazing angles, 6; and 6;, for the incident and scattered acoustic
waves, respectively, and the azimuths, ¢, and ¢; for the incident and scattered
waves (see Figure 1). Frequency enters through the acoustic wave number
in the water k; = w/cy. Roughness and volume scattering cross sections,
o, and o, are expressed in terms of the average parameters of the seabed,
a,, ap, a;, and its statistical parameters, the two-dimensional spatial spectra
of roughness, ®")(K), and the three-dimensional cross-spectra of different
volume fluctuations, @gg,(K,q), where K = K; — K; and ¢ is the vertical
component of the spectral argument [13].

2.2 Input parameters

Table 1 lists the average properties of the three sea bed types chosen for
illustration of the effects of elasticity on acoustic scattering. These sea bed
types include a strongly elastic case (sedimentary rock), a moderately elastic
case (sand with unusually high shear speed, “shear” sand), and a weakly
elastic case (sand with a more typical, “moderate”, shear speed).

Two different sets of random parameters are used for sands and rock.
The roughness and volume parameters are specified below.




The roughness spectral parameters were assigned the values used in Ref
[13): v =4,Ko = 1072m~! and B = (2/7) x A" with A®) = 105, with
the factor (2/m) resulting from the relation between 2-D and 1-D roughness
spectra.

The reference (density) 1nhomogene1ty spectrum was taken to be of the
form given in Eq. 10 withy, = 3, g0 = 1072m™}, Bf,’;) = (27)"a® x A® and
A®) = 1075, Again, these parameters were used in Ref. [13], except, here,
the aspect ratio is not taken to be unity. The parameter B,(,’;) contains a
factor a?/(2r) resulting from the relation between 3-D and 1-D spectra. The
corresponding one-dimensional (vertical) spectrum is simply A® /K, which
gives a reasonable fit to the available data [24].

In the “correlated” case, the cross spectrum matrix elements were cal-
- culated using Eq. 16 with the ratios 7, estimated from published relations
between geoacoustic parameters {10, 17] and listed in Table 2 for the sea bed
types chosen for illustration.

In another case to be considered, the elements of the correlation matrix
are taken to be of the form

B = 8ssm}, B, (19)

Because of the Kroneker delta used in Eq. 19, all the nondiagonal elements
of the correlation matrix vanish. In this “uncorrelated” case, the volume
component of the scattering cross section, according to [13], will be simply
the sum of three components

=Y ol (20)
A |

where Ug’) correspond to contributions of fluctuations of the three different
bulk parameters (8 = p, ¢, ¢1).

Calculations are presented both for the sum and for each of the terms in
Eq. 20. The former permits an evaluation of the role of cross correlations
between different volume fluctuations, or nondiagonal elements of the corre-
lation matrix, by comparison of the two extremes: the strongly correlated
case and the uncorrelated case. The latter permits a comparison of the the

role of different fluctuations.




3 DISCUSSION

The first example to be considered uses parameters appropriate to sedimen-
tary rock [6]. As the set of figures used in this and following examples is rather
involved, an explanation of the arrangement of the figures will be given before
discussing the results. Figure 2 shows the menostatic or backscattering case,
giving the dependence of scattering strength on backscattering grazing angle.
Figure 3 shows the dependence of bistatic scattering strength upon scattered
grazing angle with the incident grazing angle fixed at 45° and the difference
between scattered and incident azimuth fixed at 180°. As the scattered graz-
ing angle varies from 0° to 180°, it passes through the backscatter direction
(45°) and the forward, or “specular”, direction (135°). Figure 4 shows the
dependence of bistatic scattering strength upon the difference between scat-
tered and incident azimuthal angles at fixed incidence and scattered grazing
angles, both taken to be 45°. All three figures compare the elastic and fluid
cases. In the fluid case, the shear wave speed is set to zero and all other pa-
rameters are kept the same as in the elastic case. Each of the figures is divided
into parts (a) and (b). Part (a) compares three separate cases: roughness
scattering, correlated volume scattering and uncorrelated volume scattering.
Part (b) compares separate volume scattering mechanisms, fluctuations in
density, compressional wave speed, and shear wave speed.

For sedimentary rock, the effects of shear elasticity on both roughness and
volume scattering are very strong, as illustrated by Figs. 2-4. Noteworthy
effects are:

- Figures 2a and 3a show that roughness scattering strength exhibits
dips at grazing angles immediately below the critical angles for shear and
compressional waves (39.7° and 64.2°, respectively).

- Shear elasticity decreases roughness scattering strength compared to the
fluid case for grazing angles less than the shear critical angle and near the
forward direction (Figs. 2a, 3a, and 4a).

- Elasticity greatly enhances scattering strength for volume scattering
in the directions where it decreases roughness scattering (Figs. 2-4). The
effects for volume scattering are much larger than the effects for roughness
scattering.

- For grazing angles below the compressional critical angle, scattering due
to density fluctuations has nearly the same angular dependence as scattering
due to shear speed fluctuations (Figs. 2b and 3b).

10




- The effect of cross-correlation for different perturbations can be large,
as it is noticeable in Fig. 3a from the difference between correlated and
uncorrelated cases in the range 60° - 120°.

The influence of shear elasticity in surficial sands is expected to be rather
small as they typically have shear speeds much lower than the water com-
pressional wave speed (see, e.g., [10, 20]). For illustrative purposes, therefore,
an example will first be considered in which shear effects are exaggerated.
This example is used by Essen [6] and is distinguished by a shear speed of
480 m/s. This case of sand with high shear speed, the “shear” sand case, is
illustrated in Figs. 5-7. These figures show the following effects:

- Both roughness and volume backscattering (Fig. 5a) are reduced relative
to the fluid case for grazing angles smaller than the compressional critical
angle (33.6°). Compared to the sedimentary rock example, this is the same
behavior regarding roughness but the opposite regarding volume scattering.

- The relative contributions of volume and roughness scattering (Figs.
ba, 6a, 7Ta) are very dependent on scattering angle. Roughness scattering is
dominant near the specular direction, but volume scattering can be important
for incident or scattering angles greater than the compressional critical angle.

- The effect of cross-correlation for different perturbations can be large, as
it is noticable from the difference between correlated and uncorrelated cases
in Fig. 6a (in the range 80° to 180°) and in Fig. 7a (-100° to 100°). Note
that this difference is negligible in the fluid case.

- Volume scattering in backward directions for sands (Figs. 5b, 6b, 7b)
is mostly due to density fluctuations, while both compressional and shear
wave speed fluctuations are unimportant. But, at the same time, even weak
fluctuations. of compressional speed (an order of magnitude smaller than den-
sity fluctuations) can be important near the forward direction (Fig. 6b).
Shear fluctuations also provide significant scattering near the forward direc-
tion (Figs. 6b, 7b). ‘

The last example, with scattering strength shown in Figs. 8 and 9, is
a sand with shear speed of about 200 m/s, similar to typical measured val-
ues [10, 19]. Here again, the relative importance of roughness and volume
scattering is dependent upon angle. Density fluctuations are generally more
important than compressional speed fluctuations in the backscattering case
(Fig. 8) with relatively reduced contribution in forward directions (Fig. 9).
These effects have little to do with shear elasticity, however. In fact, the
effects of shear elasticity are negligible for both roughness and volume scat-
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tering. Scattering by shear speed fluctuations in forward and near specular
directions is about 10 dB lower than scattering by density and compressional
speed fluctuations (Fig. 9) and absolutely negligible in the backscattering
case (the shear component is not seen in Fig. 9 as its level is too low). Thus,
even though sand is definitely a shear-supporting medium in a geotechnical
sense, it can be treated by a simple fluid acoustic model.

The effects of elasticity on roughness and volume scattering for rock can
be summarized by saying that elasticity “softens” the interface, decreasing
the acoustic contrast with water with a corresponding decrease in reflection
and roughness scattering and a corresponding increase in transmission and
volume scattering. This view is substantiated by Fig. 10, which compares
the magnitudes of reflection and transmission coefficients for the fluid and
elastic cases. In the fluid case, the reflection coefficient is very nearly equal to
unity for grazing angles below the compressional critical angle. The inclusion
of lossy shear greatly alters this picture, with the energy reflection coefficient
dropping to very small values for grazing angles in the vicinity of 35°. This
causes the decrease noted in roughness scattering. At the same time, Fig.
10 shows that the transmission coefficient for pressure waves is greatly in-
creased when elastic effects are included. The conversion to shear energy
is also efficient, and both effects enhance volume scattering. The opposite
effect for scattering in high-shear-speed sand, mentioned above, is explained
" analogously by Fig. 11.

For the sedimentary rock example, when the incident and scattered graz-
ing angles are less than the compressional critical angle, only incident and
scattered vertically polarized shear waves are important. Thus, there is no
interference between different scattering channels; only shear-to-shear scat-
tering is important. This causes the similarity observed in the angular depen-

dences of scattering by density and shear speed fluctuations. The scattering
- levels due to these two mechanisms are different only because different fluc-
tuation levels are assumed (Table 2).

4 CONCLUSIONS

First-order perturbation theory results obtained in [13] have been used to
study the effects of shear elasticity on acoustic scattering by sea beds of dif-
ferent types. While the calculations presented here are quantitatively correct
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only in a region of small roughness and small volume fluctuations, it is likely
that the general conclusions drawn from these examples will be qualitatively
valid outside this region.

With respect to scattering by rock, shear elasticity weakens roughness
scattering and strengthens volume scattering. Surprisingly, this suggests
that volume scattering may sometimes dominate, or at least compete with,
roughness scattering, in sharp contrast to the predictions of the fluid model.
The other general conclusion resulting from these examples, is that sand can
be treated as an acoustic fluid. This reinforces the results presented by Yang
and Broschat [21]..
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Appendix: Volume Cross Spectrum Matrix

The matrix elements, Bggr, can be determined from Equation 11 which gives

Bﬁﬁ/ = O'ﬁO'ﬁ/Rﬁﬁrazqgv—S(’yv/Z - 1)/[7TQ(’)’-U, 6)]
where

o3 =4y/< ‘65‘2 >

are the standard deviations of the three different fluctuation types, and

Rop = < €gegi >

opop
are their cross-correlation coefficients. In the case of strongly correlated or
anticorrelated fluctuations one can put Rgg = =*1 respectively, and in the
“uncorrelated” case, Rggr = dpgr. The parameter Q(7,,€) is a dimensionless
normalizing factor

1/e 1
Q(77€) = 2/0 —‘—_—"(1 + $2)7/2_1 d.’L'

For «, = 3, one obtains

13



Q@ =2 1In(1/e),
while, for v, < 3,

Q2™ /(34
and, for v, > 3,

Q~ Q(1,0) = T(1/2T(w/2 - 3/2)/T(w/2~1),  (21)

For v, = 4, in particular, @) = 7. Expression 21 is exact if € = 0.
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Table 1: Parameters defining average, non-fluctuating bulk properties of the
illustrative sea bed types. '

Density Compressional Shear
Descriptive Ratio Speed Speed ~ Reference
Name , Ratio Ratio
m ap ay
“Normal” Sand 2.0 1.20- 0.021  0.133 - 0.01i Hamilton (1980)
“Shear” Sand 2.0 1.20 - 0.0051  0.32 - 0.07i Essen (1994)

Sedimentary Rock 2.5 2.30-0.0041 1.30-0.111 Essen (1994)

Table 2: Parameters defining random properties of the illustrative sea bed

types.
Volume Volume Volume Compress. Shear Rough. Rough.
Sea Bed Spectr. Spectr. Aspect Speed Fluct. Speed Fluct. Spectr. Spectr.
Type  Strength Expon. Ratio Ratio Ratio Strength Expon.
AW &, a Tpp Ttp Alr) £
Sand 107° 1 3 0.1 2.0 © 1070 3

Rock 10-° 1 3 3.0 4.0 107° 3




FIGURES

Figure 1. Geometry relevant to bistatic scattering from a random sea bed.

Figure 2. Backscattering strength as a function of grazing angle for the
sedimentary rock example. The fluid case uses identical parameters, except
the shear wave speed is set to zero. The abscissa is §; = 8; with ¢,—¢; = 180°.
With the parameters used, there is no frequency dependence. Here and
below: (a) roughness scattering, total volume perfectly correlated and total
volume uncorrelated scattering, (b) scattering from different types of volume
inhomogeneities. _

Figure 3. Bistatic scattering strength as a function of scattered grazing
angle for the sedimentary rock example. The grazing angle of the incident
wave is 45°. The abscissa is §, with ¢s — ¢; = 180°. All parameters are the
same as for Fig. 2.

Figure 4. Bistatic scattering strength as a function of scattered azimuth,
¢s — ¢, for the sedimentary rock example. The grazing angles of the incident
and scattered waves are §; = 6; = 45°. All parameters are the same as for
Fig. 2.

Figure 5. Backcattering strength as a function of grazing angle for the
high-shear-speed sand example. The fluid case uses identical parameters,
except the shear wave speed is set to zero.. The abscissa is 8, = 6; with
¢s —¢; = 180°. With the parameters used, there is no frequency dependence.

Figure 6. Bistatic scattering strength as a function of scattered grazing
angle for the high-shear-speed sand example. The abscissa is 8, with ¢, —¢; =
180°. All parameters are the same as for Fig. 5.

Figure 7. Bistatic scattering strength as a function of scattered azimuth,
#s — ¢i, for the high-shear-speed sand example. The grazing angles of the
incident and scattered waves are 8, = §; = 45°. All parameters are the same
as for Fig. 5.

Figure 8. Backcattering strength as a function of grazing angle for the
“normal” sand example. The fluid case uses identical parameters, except the
shear wave speed is set to zero. The abscissa is 0, = 0; with ¢, — ¢; = 180°.
With the parameters used, there is no frequency dependence.

Figure 9. Bistatic scattering strength as a function of scattered grazing
angle for the “normal” sand example. Incident grazing angle 6; = 45°. The
abscissa is f; with ¢, — ¢; = 180°. All parameters are the same as for Fig. 8.

Figure 10. Transformation (reflection and transmission) coefficients for
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“the sedimentary rock example.
Figure 11. Transformation (reflection and transmission) coefficients for
the high-speed sand example.
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